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I. Introduction 
      
     The concept underlying electric current therapy (ET) or electromagnetic field therapy (EMFT) for 
soft tissue wound healing is that the fields and/or currents beneficially affect functional aspects of cells 
and processes involved in tissue repair. For soft tissue wound healing, the most relevant application is 
for patients with wounds that are chronic, non- or slow-healing, or otherwise recalcitrant to standard 
therapy. The rationale for its use has multiple historical bases, most notably its therapeutic efficacy in 
bone healing. Extensions to soft tissue wound, or ulcer, healing have evolved with their own plausible 
rationales, which in part stem from the body's natural bioelectric system(1, 2) and early observed 
relationships between electrical events and wound repair(3). At the macroscopic level, naturally 
occurring current loops of about 10 µA have been measured in the legs of humans(4), and at the 
microscopic level, membrane function is largely determined by intrinsic electrical processes. Because 
dermal wounds interrupt normal transepithilial potentials at injury sites, the electric field and injury 
current that develop are postulated to play an important role in the healing process  (5, 6). Central to this 
concept is the fact that cells involved in wound healing are electrically charged, so that endogenous 
bioelectricity may facilitate cellular migration to the wound area, and might be involved with 
angiogenesis(7) and other wound healing processes. The extension of this concept is that if wound 
healing becomes stalled, external electrical stimulation may mimic one or more of the bioelectric effects 
and help to trigger a renewed healing progression. It has also been suggested that externally applied 
EMF may interact directly with the wound currents or with related signal transduction processes(8), 
thereby restimulating retarded or arrested wound healing. Wound healing acceleration via direct currents 
in the range of 200-800 µA, applied via a portable unit, may be an example of such a process (9). 
Research indicating potential benefits of both electric current and electromagnetic fields on a variety of 
cellular or other processes involved in wound repair are available: Reviews (8, 10) indicate effects that 
include edema reduction, neutrophil and macrophage attraction, growth factor receptor upregulation, 
fibroblast and granulation tissue proliferation, epidermal cell migration, and increased blood flow, all of 
which are important for wound healing. However, many findings are only suggestive of beneficial 
outcomes for clinical wounds, and require verification in a clinical setting. Such studies in humans are 
made difficult by the complexity of the wound healing process itself and by logistical and practical 
aspects of clinically based wound research. In spite of these intrinsic difficulties, clinical research with 
ET and EMFT continues, with a number of promising findings and an increasing amount of direct and 
indirect evidence of benefits. 
      To date, wound studies have typically involved skin ulcers caused by arterial or venous dysfunction, 
diabetes related ulcers, pressure ulcers and surgical and burn wounds. Human testing has provided some 
evidence that some therapies help to trigger the healing of “stalled” soft tissue ulcers or wounds. Human 
studies showing a positive benefit of EMFT range from those on a single subject with multiple 
experimental wounds(11)  through (a limited number of) randomized controlled trials. Many 
experiments on animals have also shown positive connections between ET or EMFT and wound healing. 
But most, if not all, of these are based on wound models that diverge in one or more important aspects 
from human “chronic” wounds, those in which repair is stalled and difficult to manage. Yet these are 
precisely the types of wounds that would most likely benefit from such adjunctive treatments.  However, 
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many EMFT-related effects on cells, tissues and processes involved in tissue repair have been 
convincingly shown to occur, as will subsequently be described. A meta-analysis of studies on 
combined chronic wound types and therapies revealed that ET was associated with an overall weekly 
healing rate of 22% compared with 9% for controls (12). Extrapolation of these figures would indicate 
that those with ET would heal fully in less than five weeks compared to about 10 weeks without 
stimulation. In another meta-analysis, which included 613 wound patients, a significant favorable effect 
of ET or EMFT was concluded (13).  However, many published clinical reports do not meet the rigorous 
inclusion criteria associated with the high level of confidence required to validate medical efficacy.  
Experimental protocols that control and adequately characterize patient, wound, and treatment variables 
are logistically difficult and very expensive of both time and money. However, the importance of this 
has been emphasized (14) and is being increasingly recognized, so it is likely that more well designed 
“randomized, controlled clinical trials” will be forthcoming.  
     The scientific case for an electrical or electromagnetic connection in soft tissue wound repair 
processes is neither complete nor fully validated. But based on many specific clinical, experimental and 
cellular observations, a clear linkage between EMFT and wound healing is strongly suggested. In July 
of 2002, the accumulated  background of information led the U.S. Centers for Medicare and Medicaid 
Services to finally approve coverage for electrical stimulation as adjunctive therapy for stage III and 
stage IV pressure ulcers, arterial ulcers, diabetic ulcers, and venous ulcers, providing that improvement 
had not occurred after 30 days of standard wound treatment. Despite this implicit acknowledgement of 
efficacy, much is yet to be learned about the factors involved, mechanisms of action, specific targets, 
optimal dosing and patterns and temporal strategies for treatment. These aspects require further targeted 
research and exploration. 
 
II. Overview of the Wound Healing Process 
 
Normal Healing is characterized by three broad phases: inflammation, proliferation, and remodeling. 
These normally proceed in a well-ordered, functionally overlapping sequence, the outcome of which 
depends upon interactions among many cell types, growth factors and processes. Vascular, (platelets, 
macrophages, mast, neutrophils, monocytes, endothelial, and smooth muscle), epidermal (keratinocytes, 
melanocytes, and Langerhans cells) and dermal (fibroblasts and myofibroblasts) cells are involved (15). 
As part of the repair process, cells release and/or interact with many components including structural 
proteins, growth factors, cytokines(16), chemokines (17), adhesion molecules(18), nitric oxide(19), trace 
elements(20) and proteases. Any participant or interaction could, in theory, be a target for adjunctive 
electromagnetic field-related therapy.  
     In terms of the sequence and functional aspects of wound healing events, the initial inflammatory 
process serves to limit blood loss (via clotting), to promote entry of antibodies and fibrin into interstitial 
spaces (via increased vascular permeability), and to deliver needed blood flow to the affected area via 
vasodilation. This initial hyperemia increases oxygen delivery, which supports the antibacterial, (and 
other), actions of accumulating neutrophils.  Activated macrophages, attracted to the wound area by 
chemotactic and/or galvanotactic signals associated with inflammation, release substances important for 
angiogenesis, for the development of granulation tissue, and for the proliferation of fibroblasts and 
epithelial cells.  Angiogenesis involves endothelial cell proliferation and new capillary formation that 
serves to supply ischemic regions of the wound, and represents an important phase of granulation tissue 
development. It is stimulated by angiogenic factors released from macrophages in response to low 
oxygen in the wound (21), and by growth factors from fibroblasts and endothelial cells.  Nitric oxide, 
present in the wound (22), affects macrophage and fibroblast functions and also affects the keratinocytes 
(23)).  Fibroblasts migrate to the wound site and subsequently proliferate. Collagen synthesis is 
triggered by fibroblast-stimulating growth factors from macrophages, and continues at a rate that is 
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linked to the adequacy of local blood flow to deliver oxygen and nutrients for protein synthesis. These 
nutrients include amino acids and interestingly, ferrous iron. Epithelialization of dermal open wounds 
depends on an initial migration of epithelial cells, triggered by epidermal growth factor released from 
both macrophages and platelets, and subsequently on the proliferation of epithelial cells. 
Epithelialization can take days to months depending on wound related factors, and depends on 
keratinocyte proliferation, migration, stratification, and differentiation (24), and on features of the 
extracellular matrix (25). Wound closure occurs as a result of active contractile forces developed within 
myofibroblasts, which in turn depends on adequate blood flow to provide  energy substrates. Wound 
closure does not end the wound healing process, and wound remodeling may continue for months to 
years. In the remodeling phase, wound strength is increased via collagen crosslinking, excess collagen 
within the wound is eliminated, and many of the capillaries developed during early wound healing are 
resorbed. 
 
Retarded Wound Healing  may be due to many factors. A wound is an added “metabolic organ," and 
appropriate progression of healing depends on the abilities of the body as a whole to supply the demands 
of this “temporary organ.” Delay of wound healing beyond about three months is a criterion sometimes 
used to characterize a wound as “chronic” or “non-healing,”  the causes of which may be of systemic or 
local origin. Some of the factors that impede wound healing include infection, inadequate blood flow, 
tissue hypoxia (due to inadequate O2 delivery or to increased O2 demand by white blood cells or other 
exudate components), and inadequate nutrient availability to support tissue building metabolic 
processes. Certain conditions such as diabetes have further implications: Hyperglycemia and impaired 
insulin signaling may directly impair keratinocyte glucose utilization thereby altering both proliferation 
and differentiation (26). Inhibition of nitric oxide production diminishes wound-healing activities of 
fibroblasts and keratinocytes and causes delay in wound healing (27, 28). Deficiencies in wound 
concentrations of platelet activating factor are associated with impaired healing of chronic venous ulcers 
(29). Given the variety of causes for retarded wound healing, no “most important” electromagnetic 
target has been defined. However, because blood supply plays a major role in many of the processes, 
increases in blood flow and/or oxygen supply are often intrinsic targets. 
 
III.  EMF Methods and Strategies for Wound Healing 
 
     Therapeutic approaches using ET (direct skin contact using electrodes) and EMFT (non-contact) may 
be divided into two broad categories; (a) those applied at the wound site and (b) those applied remote 
from the wound site. Included in category (a) are electric currents and fields, generated in variety of 
ways, with a range of excitation patterns, in which the wound itself is directly exposed to the currents or 
fields. In the case of ET, an electrode may be placed directly in the wound bed or the wound may be in 
the path of electrode pairs that straddle the wound. Included in category (b) is electrostimulation (ET or 
EMFT) of either nerves or tissue regions that functionally connect with, and potentially alter, wound site 
processes, either directly or via reflex effects. Both categories have been reviewed as they relate to 
different wound conditions (30, 31). 
     Another useful broad distinction between devices that has been used for wound healing is whether 
they are mainly electric or mainly electromagnetic. In electromagnetic devices, no electrodes are needed 
and target tissues are exposed to electric and magnetic fields and their associated induced currents. 
Among electromagnetic devices, all use time varying or pulsed excitation, some of which modulate a 
carrier frequency, commonly 27.12 MHz.  A further distinction among pulsed radio frequency devices is 
made with respect to their potential tissue heating effects which is related to the energy they deliver to 
the tissue. Commercially available EMF devices usually specify device average or peak power but these 
do not specify the energy or field strengths delivered to target tissues. Pulse width and shape generated 
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by most commercial devices is fixed (65--95 µsec), with the power per pulse usually controlled by 
varying pulse amplitude. Total power is adjusted by varying the pulse repetition frequency, which, for 
"nonthermal" devices, typically ranges between 80 and 600 pps (Diapulse and Sofpulse). Devices that 
function in nonthermal and thermal ranges may allow both variable pulse width and rates (Magnatherm, 
700--7000 pps), whereas other devices provide no control features (Regenesis). Tissue thermal effects 
are thought to be minimized by use of low duty cycles, on the assumption that heating due to high power 
single, short pulses, will be dissipated during a much longer off-time between successive pulses. In 
general, for ET or EMFT, the parameter variants include generated power, excitation frequency, pulse 
width, repetition rate and duty cycle, carrier frequency, current magnitude, and magnetic field intensity. 
In addition there are variants with respect to specific features of the excitation patterns, i.e., whether 
stimulation is continuous or pulsed, galvanic or frequency modulated, biphasic or monophasic, 
symmetrical or asymmetrical, sinusoidal or not, and whether high voltage or low voltage stimulation is 
used(30-32). It is partly because of this wide range of physical excitation parameters that it has been 
impossible to correlate specific features with wound healing efficacy. However, it has been argued that 
the use of pulse radio frequency EMF (PREMF), with its inductive coupling to tissue, provides for a 
more uniform and predictable electromagnetic field signal in the target tissue than is currently achieved 
with surface contact electrodes(33). Thus, the tissue dose is more reliably characterized. It has also been 
argued that, because of the large spectral range of PREMF, there are more possibilities for coupling of 
the field to produce effects in a wider range of possible (but as yet unspecified) biological processes. 
More detailed technical descriptions may be found in several sources(30-34).  
 
IV. Clinical Findings of EMF-Therapy for Specific Wound Types 
 
A. Venous Ulcers 
     Venous ulcers occur on the lower extremities and are the most common chronic skin wounds in 
humans. Venous disease increase with age and results in venous ulcers in about 0.3% of the adult 
population (35). Venous reflux and venous hypertension due to incompetence of deep and 
communicating vein valves and thrombosis of deep vein segments are linked to the development of 
venous ulcers. The evolution of skin ulcers from venous hypertension is not fully understood, but 
contributory factors probably include inflammatory processes, intercellular and vascular adhesion 
molecule upregulation (36), protein rich edema, leukocyte trapping, oxygen deprivation, and 
microcirculatory deficits (37-40).  Microangiopathy due to venous hypertension may have several 
manifestations that include abnormally dilated and tortuous capillaries, loss of some functional 
capillaries, microvascular thrombosis, increased capillary permeability and transcapillary fluid efflux, 
tissue edema and altered function of microlymphatics. Compression therapy has been reported to help 
normalize capillary numbers and size (41) and to tend to normalize the abnormally elevated limb blood 
flow (42). Healing has been reported to occur only after aspects of the dermal microangiopathy have 
improved (43). Increased activation of platelets, monocytes and neutrophils leading to microvascular 
aggregation (44) and microvascular entrapment of neutrophils (45) has been shown. 
     In a review of randomized controlled trials (RCT) (46), only three eligible studies were identified 
(47-49). The reviewers state that there is “currently no reliable evidence of benefit of electromagnetic 
therapy” in the healing of venous leg ulcers. Although this conclusion may be warranted for one of the 
reviewed studies, (too few subjects and mixed results), one may question judgments based on the other 
studies. One was double-blind and compared sham vs. active pulsed EMF therapy (75 Hz, peak field of 
2.8 mT) in 37 patients (19 sham) for 90 days (47). At the beginning of the study, ulcers had been present 
for an average of 30 months in the actively treated group, versus 23 months in the controls. Stimulation 
was applied with an enclosed coil placed over the wound by patients, at home, for 3--4 hours per day. 
After 90 days, of the actively treated ulcers, 12 were healed, as compared to six in the sham group 
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(p<0.02). Further, granulation tissue, not present prior to active treatment, was present in all patients 
actively treated by day 15, whereas only seven of the sham group showed new granulation tissue.  
     The other study (48) was a prospective, randomized, double-blind, placebo-controlled multicenter 
investigation of 27 patients with recalcitrant venous ulcers (mean duration of 39--47 weeks). Patients 
were treated for 8-weeks at home for three hours per day with a wearable portable EMF device (22 
Gauss, bidirectional pulse of 3.5 msec, 25% duty cycle). All received compression bandaging and daily 
3-hour leg elevation. At week 8 the active group (N=17) had a 47.7% decrease in wound surface area vs. 
a 42.3% increase for placebo (P < 0.0002). The investigators' global evaluations indicated that 50% of 
ulcers in the active group had healed or were markedly improved, vs. 0% in the placebo group. Other 
studies have directly indicated a beneficial effect of EMF therapy for venous ulcer healing. In one of 
these, twin 100 volt pulses (0.1 msec, 100Hz) were applied directly to the ulcers, which resulted in 
healing rates that were superior to standard therapy alone(50). In another study, EMF patterns were first 
tailored to interact with human monocytes, as judged by an in vitro assay, and then the EMF pattern was 
used as the sole treatment for patients with predominantly venous ulcers(51). Results, which were 
assessed with each patient's long standing and non-responding ulcer as a control, were suggestive of a 
beneficial action of the stimulation. 
 
B. Arterial-Ischemic Ulcers 
     The main predisposing condition for arterial-ischemic ulceration is advanced peripheral artery 
disease affecting arteries supplying the lower leg and foot. These ulcers, which can be particularly 
painful and difficult to treat, frequently occur in areas subject to pressure or trauma such as between the 
toes or at the malleolus or posterior heel regions. Adjunctive therapies for ischemic ulcers for which 
standard available medical approaches have failed are sorely needed. In this author’s opinion they could 
become one of the most important targets of EMF therapy in the future. Recent pilot work (52) using 
high voltage pulsed currents to treat ischemic ulcers in six diabetic patients with very poor initial 
microcirculation, suggests that treatment can raise local oxygen levels sufficiently to save some legs 
from amputation.  
     Because the main impediment to wound healing in this condition is inadequate blood flow, effective 
EMFT would be expected to affect blood flow. There is substantial evidence that this is indeed a 
realizable goal. Although effects of EMFT on blood circulation are dealt with in detail elsewhere in this 
book, it is useful here to examine certain aspects that may be tightly linked to wound healing potential. 
Early work using PREMF addressed the issue of augmenting blood flow to ischemic regions via reflex 
effects. PREMF (27.12 MHz) was applied to the epigastric region using low duty cycle excitation in 
normal persons(53) and in persons with peripheral arterial disease(54). The idea was that the use of 
short but intense pulses could deliver useful therapeutic excitation without causing significant tissue 
heating. The physiological strategy of targeting a remote site (epigastric area), rather than the ischemic 
region itself (foot or ulcer), is to reflexively increase blood flow to the ischemic region without 
imposing added metabolic demand via local heating on the distant (ischemic) region. Results on 20 
normal subjects showed a dose-dependent increase in foot perfusion as judged by toe-volume 
plethysmography and toe temperature, which rose an average of 2o C, without a significant core 
temperature elevation(53). A series of 12 similar PREMF treatments (65 µsec, 600 pps) given over a 
period of two weeks to 18 patients with intermittent claudication, also resulted in an increase in toe 
temperature (>3.0o C), with no significant increase in core temperature(54). Although the duration of toe 
temperature elevation was short-lived after each 20 minute stimulation was ended, the cumulative 
effects appeared to be sustained, as measured by increased pain-free walking distance at the end of the 
two week treatment sequence. A toe temperature increase was also noted in normal subjects but to a 
lesser degree than in patients.  
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      More direct measures of blood flow have used laser-Doppler perfusion monitoring (55-57) which 
permits skin blood flow to be directly monitored before, during and after EMF exposures. PREMF (65 
µsec, 600 pps, one Gauss) was applied 1.5 cm above open foot ulcers in diabetic patients.  Results 
showed an EMF-treatment related increase in periulcer blood perfusion. Based on the observed flow 
patterns, these authors judged that the increase was predominantly caused by an increase in the number 
of capillaries with active blood flow. This flow feature was consistent with an EMF-field-related 
capillary recruitment process(57) that may have reflected precapillary vasodilation.  Similar 
microcirculatory flow increases were reported for forearm skin of normal persons (58) and for persons 
with post-mastectomy arm lymphedema (59), but interestingly, no effects of a static magnetic field (500 
Gauss) were observed in the hands (60) or forearms of normal subjects(61). 
     To date there have been no reported clinical trials using PREMF directly for ischemic ulcers, but  
other forms of electrical stimulation have produced similar changes in blood flow. A particularly 
promising approach is epidural spinal cord electrical stimulation (ESES), which appears to benefit 
patients with severe lower extremity ischemia secondary to atherosclerotic disease. This therapeutic 
approach requires implanted electrodes at the T10--T11 level and usually the use of an implanted pulse 
generator. This therapy significantly increased microscopically measured blood velocity in capillaries 
and density of skin capillaries in the foot(62). In patients with rest pain and ischemic ulcers, this 
technique resulted in immediate pain reduction, and in most patients was accompanied by 
microscopically verified increases in capillary blood velocity and density, and a significant increase in 
post-occlusive microvascular hyperemia (63). In more than half of these patients, the ulcers 
subsequently healed, resulting in significant limb salvage. Other studies using ESES have shown similar 
limb salvage rates and ulcer healing potential (64, 65). In patients with and without ulcers, the degree of 
therapeutic success tends to correspond to an increase in transcutaneous oxygen tension (66-68), (which, 
is itself dependent on blood flow increases in the foot). 
 
C. Diabetes-Related Ulcers 
     Persons with diabetes are more susceptible to developing skin ulcers due to neuropathy, ischemia and 
poor glycemic control. The higher likelihood of peripheral arterial disease and the presence of 
microvascular deficits increase the chances of ischemia, tissue to breakdown, and ulcer formation. 
Ulcers in diabetic patients are generally more difficult to heal for reasons that include reduced blood 
flow and wound oxygenation, deficits in wound cell function, and infection. Recent work has shown that 
it takes much less local pressure to reduce skin blood flow in regions of bony prominence in persons 
with diabetes(69). When sensory neuropathy is present, normal pressure/pain signals are diminished or 
absent, thereby removing warning of developing tissue injury. Most of these types of ulcers develop on 
the foot, with plantar ulcers often associated with neuropathy. Effective therapy should include 
elimination of elevated foot pressures combined with standard wound care, but this is not always 
adequate to effect wound healing. Statistics suggest that about 15% of persons with diabetes will get a 
foot ulcer(70), with an annual incidence rate of 2.2%(71).  In this population, non-healing ulcers account 
for 54,000 extremity amputations per year(72), and an annual amputation incidence rate between 0.5--
0.8% (number of amputations per patient-year)(73). 
     Pulsed-galvanic electric stimulation (50 volts, 100 µs), delivered through a conductive stocking for 8 
hours every night, was used as an adjunct to standard care for healing diabetic foot ulcers in 40 
patients(74). The study was of a randomized, double-blind, placebo-controlled pilot trial design, with 
half of the patients receiving ET and half receiving sham treatment. All received standard wound care 
including off-loading with removable cast walkers. Patients were followed for 12 weeks or until healing, 
whichever occurred first. Considering only patients who were protocol compliant, 71% of those actively 
treated healed, compared with 29% in the sham treatment group (p=.038). From these data the authors 
concluded that the ET improved wound healing. A different ET regime was employed to treat the ulcers 
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of a group of 80 diabetic patients. Daily treatment included a biphasic stimulation pattern consisting of 
either asymmetric or symmetric square-wave pulses at amplitudes set to activate intact peripheral nerves 
in the skin. Controls consisted of groups that received either very low levels of stimulation current, or no 
electrical stimulation. Average healing rates, measured weekly as changes in ulcer perimeter, were 
significantly greater than in controls only when the asymmetric treatment was used (75). In a group of 
64 diabetic patients with chronic ulcers, electrical nerve stimulation was used therapeutically for 20 
minutes twice daily for 12 weeks(76). The excitation parameters in this study consisted of an 80 Hz 
pulse train with a one msec pulse width and an intensity sufficient to evoke strong paresthesias. All 
patients received standard treatment with half also receiving either sham or active electrical stimulation. 
At 12 weeks, the active treatment group was reported to have significantly reduced ulcer area and more 
healed ulcers (p < 0.05). 
     In many ways, plantar ulcers in persons with leprosy resemble diabetic ulcers. In a pilot, randomized, 
double-blind, controlled clinical trial (77), 40 leprosy patients with plantar ulcers received standard 
treatment and half of them (EMF group) received exposure to pulsed sinusoidal magnetic fields (0.95 to 
1.05 Hz, 2400 nT) for four weeks. Outcome measures were the calculated ulcer volume recorded on the 
day of admission and at the end of treatment. In the control group, mean ulcer volume at entry was 2843 
mm3 which was reduced to 1478 mm3 at the end of treatment (P = 0.03); corresponding values in the 
EMF-treated  group were 2428 mm3and 337 mm3 (P < 0.001).  These data indicate that the EMF therapy 
caused a significantly more rapid healing of plantar ulcers in these leprosy patients. 
 
D. Pressure Ulcers 
     Pressure (decubitus) ulcers result from sustained or inadequately relieved pressure, most frequently 
on bony prominences such as the heel and sacral region. These ulcers represent an important clinical, 
humanitarian and economic problem with an average prevalence in acute care facilities of 10.1%(78) 
and a reported incidence in persons age 65 and older of 0.18 to 3.36 per 100-person years depending on 
age(79). Ulcer development depends on many factors including age, nutritional status, mobility, skin 
irritations and general health status(80-82), but a final common pathway is associated with blood flow 
changes within pressure-loaded tissue (83-88). Some experimental evidence suggests that both ischemia 
and ischemia-reperfusion injuries are involved(89).The clinical stages of pressure ulceration range from 
non-blanching erythema (Stage I) through full-thickness skin loss with extensive destruction and tissue 
necrosis involving muscle or bone (stage IV).  
     Examining available literature-based randomized controlled trials led reviewers to the judgment that 
there is insufficient data from too few clinical trials to conclude that electromagnetic therapy to treat 
pressure sores is beneficial (90, 91). In spite of this conclusion, data from these reviewed studies, and 
others not included, do provide interesting and strongly suggestive findings of potential benefits of 
PREMF therapy. One small study (92) used PREMF (27.12 MHz) on patients with long-standing 
pressure ulcers and found significant improvement over standard treatment alone. Another study (93) 
was randomized and double-blind and used similar PREMF therapy or sham to treat a total of 30 spinal 
cord injured patients who had either stage II or III pressure ulcers. Wounds were treated for 30 minutes, 
twice daily, for 12 weeks, or until healed. The authors indicate that, after controlling for the baseline 
status of the pressure ulcers, PREMF treatment was independently associated with a significantly shorter 
median time to complete healing. An additional study (94) using the same PREMF method to treat 
patients with either stage II or stage III long-standing pressure ulcers, also reported improved healing. 
PREMF (20 and 110 pps) was also reported to trigger healing progress in five elderly males with 
trochanteric or sacral pressure ulcers(95). Similar positive results of pulsed ET (300--600 µA) were 
reported in a double-blind placebo controlled study of long-standing stage II and III pressure ulcers in 
which healing rates were significantly improved with active treatment(96). High voltage pulsed galvanic 
stimulation (200 volts, 100 pps) was used to treat 17 persons with spinal cord injury for 20 days. One 
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electrode was placed on the ulcer and one on the thigh. The reported outcome was a greater reduction in 
ulcer area  as compared to a placebo group(97). In an extensive study of 150 persons with spinal cord 
injury, the use of pulsed biphasic ET (0.25 msec, 40 Hz, 15--25 ma), with electrodes applied across 
pressure ulcers, resulted in significantly faster healing(98). 
     Based on available clinical data, it appears to this author that a strong, if not conclusive, case is made 
for a beneficial effect of electromagnetic therapy for pressure ulcers. In fact, the National Pressure Ulcer 
Advisory Committee (NPUAC) has included electrotherapy as an adjunctive therapy for pressure ulcers 
that have failed to heal by other means. Further, aside from treatment benefits, there is some 
experimental evidence that ET of the gluteal muscles may have preventative effects related to beneficial 
buttock shape changes(99) and by increasing muscle thickness and blood flow(100, 101). High voltage 
pulsed galvanic treatment (75 volts, 10 Hz) of 29 persons with spinal cord injuries resulted in a 35% 
increase in sacral skin oxygen tension (102). Further studies of the role of EMF stimulation as a 
potential preventative modality would thus appear warranted. 
 
V.  Potential Physiological Targets of EMF Wound Therapy and Mechanisms 
 
     The mechanisms by which externally applied EMFs alter cellular properties and biological processes 
to effect improved wound healing are unknown, although there are many theories that describe how 
EMF interactions may occur at cellular and subcellular levels. Whatever the specific mechanisms turn 
out to be, it is this author’s opinion that clinical efficacy depends on determining the proper therapeutic 
parameters and timing to optimally modulate cellular features and their interacting processes within the 
context of the wound healing cascade.  Specific targets for any of the postulated mechanisms could 
theoretically be any of the cells, or functions, involved in the wound healing process. In the following 
subsections the focus is only on some of the main relevant experimental cellular targets and findings. 
 
A. Endothelial Cells 
     A role of EMF stimulation on the growth rate of endothelial cells was suggested by studies in which 
partially denuded cell layers reacted to an external field in a manner similar to in vivo angiogenisis, but 
with an accelerated rate as compared to non-exposed cells(103). Other in vitro studies, in which cells 
derived from human umbilical vein and bovine aorta were subjected to repetitive five msec pulse bursts 
from a Helmholtz device at 15 Hz,  produced corresponding results(104). In these studies the calculated 
electric field at the center of the tissue culture dish containing the cells was 1.3 mV/cm and the 
measured magnetic field was about one Gauss.  By examining the rate at which the cells transformed 
from a monolayer configuration to tubular structures, after cell-layer wounding, the authors determined 
that vascularization rate was increased in the presence of the EMF stimulation. 
     Studies on human umbilical vein cells showed that endothelial cell migration to a wounded area is 
accelerated if cell cultures are exposed to a sawtooth pulse train (2 mT peak, 25 Hz) (105).These results 
were demonstrated in the presence of growth factor and an induced electric field (0.04 -- 0.11 volts/m) 
perpendicular to the wound edges. Further evidence of an angiogenesis-electrical connection stems from 
studies on skeletal muscle in which chronic stimulation of rat muscles resulted in an increase in blood 
vessel density, thought by the authors to involve both angiotensin and vascular endothelial growth factor 
pathways(106). Various pulsed EMF waveform patterns applied to the rabbit ear chamber(107), also 
suggested an EMF-affected increase in vessel growth, but results were highly selective and limited to a 
specific excitation pattern. Evidence that vascular smooth muscle relaxation may be induced by EMF 
exposure due to endothelial cell mediated processes is provided by studies of rings of bovine aorta(108). 
The rings, which were initially contracted with phenylephrine, were found to relax when exposed to the 
effluent from bovine endothelial cells treated with a pulsating electric field (one five second pulse train 
every 30 minutes, pulse width 0.1 msec, 30 volts, 100 -- 500 mA). Threshold levels for relaxation were 
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found to be between 0.5 to 1 Hz with a maximum relaxation at 16 Hz. The authors concluded in part that 
the EMF-induced endothelium-dependent relaxation was due to nitric oxide released from endothelial 
cells. Taken together, these findings offer strong evidence for an endothelial cell-electric connection 
which may affect both angiogenisis within the wound bed and vasoactive changes that mediate blood 
flow delivery. Whether or not these are related to enhancement of nitric oxide release, alone or in 
combination with other factors, represents an important research question. 
 
B. Fibroblasts 
     Sinusoidal currents (300 Hz) applied for 15 minutes to rat incision wounds was reported to improve 
microcirculation and to stimulate proliferation and differentiation of fibroblasts (109). Sinusoidal 
magnetic fields  (0.06--0.7 mT, 50, 60 and 100 Hz) increased chick embryo fibroblast proliferation (26--
31%) with excitation frequency or intensity when the other was held constant (110). However, treatment 
of rat incision wounds with PEMF of the type and intensity used for bone healing failed to produce 
significant increases in soft tissue fibroblast counts or improvement in wound closure (111). More 
recent work on normal human fibroblasts exposed to 50 Hz, 20 or 500 mT for 1 or 4 days failed to show 
any significant effects on measured fibroblast parameters (112).  
     High voltage pulsed galvanic stimulation (HVPGS) of cultured human fibroblasts showed that 
increases in protein and DNA synthesis could be demonstrated, but only for specific combinations of 
voltage (50-75 volts) and pulse rates (100/s) (113). HVPGS also increased the rate of fibroblast 
formation and wound contraction in a pig burn wound model(114). When human dermal fibroblasts in a 
type I collagen dermal matrix were exposed to electric fields ranging from 18 to 1,000 mV/m at 
frequencies of 10 and 100 Hz, only a narrow amplitude window between 37 and 50 mV/m at 10 Hz 
yielded increases in cell proliferation, which, at the reported maximum (41 mV/m), resulted in a 70% 
increase in total DNA (115, 116). Fibroblast proliferation and collagen synthesis were also demonstrated 
in a tendon explant model when exposed for four days to 1--Hz, 1--ms duration pulses (peak 7 A/m2, 
average 7 mA/m2).  Exposures to lower (1.8 mA/m2) or higher (10 mA/m2) current densities had either 
no effect or an inhibitory effect on fibroplasia (117). Dermal fibroblast growth into a collagen sponge 
matrix was found to be increased in the presence of direct currents between 20 and 100 µA, with 
maximum effects near the cathode at a current of 100 µA (118). Experimental surgical abdominal 
wounds in rats, when treated with an implanted stimulator (bipolar pulses, 0.87 Hz, 25 µA), showed 
earlier fibroblast formation and collagen deposition, and more rapid maturation and longitudinal 
alignment of the collagen fibers, which resulted in stronger scars (119). In rabbits, patellar ligament 
healing, with increased capillary and fibroblast densities and more mature longitudinally oriented 
collagen fibers, occurred earlier with pulsed (10 Hz, 25 µsec) EMF therapy. The most consistent results 
were obtained at a field strength of 50 Gauss(120). Recent work has indicated that when cultured 
fibroblasts are exposed to PREMF (27.1 MHz, 32 mW/cm2, 15 minutes) there is a significant 
enhancement in cell proliferation(121, 122). Taken together these findings suggest that EMF affects 
aspects of fibroblast activities that are important to wound healing. However, the forms and patterns of 
excitation needed to consistently affect the fibroplasia features must to be further elucidated, an aspect 
that likely depends on a better understanding of the mechanisms involved. 
 
     Regarding possible mechanisms, it has been proposed that EMF stimulation of fibroblasts induces 
transmembrane currents that open voltage-controlled calcium channels causing ATP re-synthesis, 
activation of protein kinase mechanisms to synthesize cell protein, and DNA replication for mitotic cell 
division(123). Sinusoidal EMF exposure (20 Hz, 8 mT) of human skin fibroblasts (124) has been shown 
to change cellular calcium oscillation activity within 40 min, with responses (increase or decrease in 
dynamics) depending on a cell's differentiation state. It has been hypothesized that modulation of 
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proliferation and differentiation phases is triggered by immediate but transient increases in cAMP-
dependent protein kinase activity (125).  
     Based on stimulation experiments (10--100 Hz, 0--130 µA/cm2) with human dermal fibroblasts in a 
collagen matrix, an amplitude and frequency windowing process that may predict fibroblast 
proliferation conditions has been proposed (126). The proposed ion-interference mechanism considers 
the effects of induced electric gradients on protein-bound substrate ions. Tissue cultures of human 
foreskin fibroblasts, when exposed to 2 V/cm fields at either 1 or 10 Hz, demonstrated a six-fold 
increase in internal calcium, but excitation at 100 Hz had no significant effect(127). The fact that the 
internal calcium increase depended on external calcium concentration, and was blunted by a calcium 
channel entry blocker, suggested that the stimulation-induced calcium increase was due to increased 
calcium influx via voltage-gated calcium channels. Since the channel-gating process may be initiated by 
a membrane depolarization of 30--40 mv(128), it has been argued that the coupling with the applied 
external oscillatory field may be due to forced vibrational effects on free ions on either side of the 
plasma membrane, which in turn alter transmembrane potentials sufficiently to open voltage-gated 
channels(129). However such an oscillatory mechanism would not directly explain the fact that DC 
fields (10 V/cm) cause an even greater calcium increase(127). The fact that the kinetics of the calcium 
entry process saturate after about 30 minutes of continued field exposure may provide initial guidelines 
for durations of electrotherapy treatments. 
     In view of the many linkages between EMF stimulation and verified selective modulations of 
intracellular calcium, it would seem to this author that the search for optimal stimulation parameters to 
selectively control calcium fluxes is narrowing, and represents an exciting and useful research target. 
However, it is important to bear in mind that although calcium entry into fibroblasts is associated with 
fibroblast stimulation(130, 131), calcium entry effects on vascular caliber, and thus on blood flow, 
depends on the specific cell type experiencing the field-induced calcium influx effect. Increased calcium 
entry into vascular smooth muscle promotes vasoconstriction and blood flow reduction, whereas 
calcium increase in endothelial cells promotes synthesis of nitric oxide(132-134), which normally 
produces vasodilation and a blood flow increase. 
 
C. Leukocytes and Macrophages 
     Much of the contribution of leukocytes to wound healing depends upon their activation during the 
inflammatory phase. This activation is associated with a respiratory burst, the release of cytokines and 
oxygen radicals, and an upregulation of cell surface receptors that increases adhesion between 
leukocytes and endothelial cells. Although entry of neutrophils into the wound area is needed for their 
antibacterial actions, a process perhaps initiated by electric field gradients via galvanotaxis(135), their 
continued entry, sustained presence, and activation may be associated with diminished local blood flow 
due to capillary plugging, abnormal vasoconstriction, and tissue damage associated with continued 
enzyme release. Evidence of such involvement in impaired healing comes from studies on genetically 
diabetic mice, in which the inflammatory phase is prolonged and dermal wound healing is significantly 
retarded(136). The sustained inflammatory phase was related to prolonged expressions of inflammatory 
and chemoattractant proteins that were expressed by keratinocytes and resulted in the persistence of 
both neutrophils and macrophages within the wound site. Under conditions in which the inflammatory 
phase is abnormally prolonged, actions of EMF stimulation that affect these and other features of 
activated leukocytes could influence the wound healing process. Of particular note is the fact that 
neutrophil activation is accompanied by oscillations in intracellular free calcium concentrations and 
membrane potentials at frequencies in the range of 0.05 to 0.1 Hz.  
     In a series of elegant experiments it has been shown that the intensity of these oscillations could be 
increased in the presence of electric fields (20 msec pulses) that were delivered during the trough of the 
oscillations at a rate that matched the intrinsic oscillatory frequency(137). The effect, termed metabolic 
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resonance, was found to occur with electric fields of 1 x 10 -4 through 2 x 103 V/m. An additional 
finding revealed that reactive oxygen metabolites, normally generated at the 0.05--0.1 Hz rate from 
migrating neutrophils, could be increased or terminated depending on the phase relationship between 
applied field and the intrinsic oscillatory process. Electrical stimulation has also been proposed to 
promote neutrophil, monocyte and macrophage migration to the wound area(138) by virtue of the 
interaction between their surface charge and the prevailing electric field. Selection of initial polarity 
(anode or cathode) placed on the wound in the case of electrode type stimulation may enhance this 
effect. 
 
D. Keratinocytes 
     Normal wound healing depends on epithelial cell proliferation and migration to effect wound 
reepithelialization and closure. Normal early triggering of proliferation is in part related to secretion of 
granulocyte- macrophage colony stimulating factor from several cell types, including the keratinocytes 
themselves (139). Deficiencies in adhesion molecules, such as L-selectin and intercellular adhesion 
molecule-1 (ICAM-1), lead to impaired keratinocyte migration and retarded wound healing(18). Based 
on the fact that keratinocytes exhibit galvanotaxis (140), it has been proposed that the lateral electric 
field associated with a wound or injury current is an early stimulus for the initiation of the migration 
process of epidermal keratinocytes (141). Directed migration of keratinocytes toward a wound is 
endogenous, associated with wound-associated direct currents corresponding to a field of about 100 
mV/mm, a process that depends on growth factors, extracellular calcium(142) and intact keratinocyte 
β1-integrins(143). It is significantly reduced if protein kinase activity is inhibited(141). Thus, the field 
strength required to promote epithelial migration seems to depend on the constituents of the wound 
environment and on the ambient levels of growth factors, but in a simulated normal wound environment, 
migration is noted at field strengths close to those generated by the wound (144-146). It has also been 
observed that exposure of keratinocytes to pulsed electric fields may enhance cellular differentiation at 
the expense of migratory and proliferative aspects(147). 
 
VI. Blood Flow and Edema as EMF-Related Wound Healing Targets 
 
     Blood flow as a target for EMF-related wound healing therapy can be conveniently considered in two 
categories: flow to the wound site and flow within the wound.  In the first case, that of flow to the 
wound, the EMF targets are principally small arteries and arterioles feeding the wound bed site. 
Changes in vasoactivity of these vessels may be induced either directly, by EMF effects on vascular 
smooth muscle or endothelial cells, or indirectly, via neural activation, as in transcutaneous electrical 
nerve stimulation (TENS) (148-150) or by magnetic stimulation(151). Recent histological work 
indicates that skin blood vessels are innervated by sensory, sympathetic and parasympathetic 
fibers(152), so any of these may be  suitable targets for EMF-effects. In addition, EMF-related 
reductions in impediments to local flow, such as by release of trapped leukocytes via EMF-related 
deactivation, or by increasing global blood flow to the region, as by spinal cord stimulation, may also be 
suitable targets. The other flow-related category relates to blood flow within the wound bed, which 
supports  granulation and its functions in wound healing. This is a process that depends on angiogenesis 
and relative flow distribution within the wound. In this case it is unlikely that EMF exposure remote 
from the wound site would have benefit, unless neural (or other) pathways that selectively innervate (or 
effect) the wound site can be identified and appropriately stimulated.  
     Another point that should be considered is that, although blood flow deficits are involved in ischemic 
and in some diabetic ulcers, it is not necessarily true that greater blood flow means faster wound 
healing. Nor is it clear that greater tissue oxygenation is always good for the natural wound healing 
process. It may be argued that effects of blood flow on wound healing depend, at least in part, on the 
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timing of increases or decreases: If blood flow is too high initially it may affect the trigger for 
angiogenesis, and if it is sustained at too high a level it may result in increased edema. On the other 
hand, if flow becomes too low, it will no longer support wound metabolism and may cause a sustained 
inflammatory phase that inhibits healing. It is possible that the need to reverse polarity of some forms of 
ET to effect wound healing may reflect the need for these different requirements for blood flow(153). Of 
course, polarity also influences the direction of cell migration(154). 
     Since low oxygen tension triggers angiogenesis, hyperperfusion, occurring at the wrong time, may 
actually inhibit healing. For example, in patients with venous ulcers, overall limb blood flow is elevated 
(42, 155-157) as is total peri-ulcer skin microvascular blood flow (55, 157, 158). Yet abnormally dilated 
pre-capillary arterioles are present (159), and there is a maldistribution of the total flow between 
nutritive and non-nutritive pathways (41). This maldistribution may be related to activated leukocytes 
that plug nutritional capillaries or other selective flow diminution processes. If leukocytes are involved, 
then an EMF-related reduction in neutrophil activation and adherence might be beneficial from three 
perspectives: reduction in local ischemia in regions served by obstructed capillaries, normalization of 
the effects of enzymes and free radicals released by activated leukocytes, and reduction in the edema 
associated with their activation. Further, in patients with venous ulcers, the arteriolar vasoconstriction 
normally induced by standing is significantly blunted (160). This undoubtedly contributes to the local 
microvascular hyperperfusion, which exacerbates hypertension within post-capillary venules and 
capillaries, and causes further tissue edema. Such "high perfusion microangiopathy" may also be 
involved in neurogenic diabetic ulcers (160). Thus the possibility of global hyperperfusion, with 
simultaneously reduced wound blood flow and localized tissue edema, is a plausible basis for delayed 
healing. This scenario suggests that an EMF-related selective vasoconstriction of non-nutrient 
circulation may be of benefit. Alternatively, an EMF-related increase in local nutritional wound blood 
flow, if it overcomes the relative ischemia without causing substantial edema, might favor wound 
healing. Normally, edema (such as occurs with venous ulcers) is controlled via compression bandaging, 
which, among other aspects, is thought to redistribute microcirculation and thereby to normalize the 
deficient nutritional capillary network (157). Therefore, EMF therapy to increase total blood flow 
should always be used in conjunction with standard compression bandaging. 
     Patients with chronic venous insufficiency, and presumably those who go on to develop venous 
ulcers, appear to have increased vasomotion frequency (161). This vasomotion, which is due to 
spontaneous changes in blood vessel diameter, manifests itself as measurable rhythmic changes in blood 
flow at frequencies that range from 0.05 to 0.5 Hz(162).  This suggests that EMF-related effects on 
vasomotion(163) may also have an impact on wound blood flow and wound healing. EMF excitation 
may alter arteriolar vasomotion through its effect on intracellular calcium ion oscillations and other 
calcium signaling processes. Although not specifically studied in vascular smooth muscle cells, (the 
effectors for vasomotion), an EMF-related (50 Hz ) reduction in total spectral power content of cytosolic 
calcium ion [Ca++] oscillations, and specific changes in the low-frequency band (0--10-3 Hz), have been 
demonstrated in human leukemia cells(164). Effects were noted only in cells in which such oscillations 
were already present(165). An argument for the role of spectral power changes as a mode of cellular 
encoding has been made(166), although both amplitude(167) and frequency(168) may be involved in 
encoding and decoding. Such a process may be involved in the EMF-related effects that alter the 
arteriolar vasomotion that is linked to local blood flow changes. Based on these findings and other 
considerations, it is the author's view that the effectiveness of EMF therapy for altering blood flow to 
stimulate wound healing may be optimized by linking field/current parameters to rhythms of the healing 
process using feedback that detects and accommodates naturally occurring physiological and vascular 
dynamics. 
 
Edema 
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     Although the role of the lymphatic system in wound healing has generally received little attention, 
several aspects of this “orphan” component of the circulatory system may have important consequences 
with respect to wound healing and the role of EMF therapy. Interstitial accumulation of fluids as edema 
or as a protein rich lymphedema retards blood flow by reducing perfusion pressure, reducing oxygen 
diffusion to tissue, and acts as a breeding area for infection (169, 170). In the early phases of a wound, 
edema is largely due to changes in capillary permeability associated with the inflammatory phase, but 
damage or dysfunction of the terminal lymphatic system is also probably involved. The presence of 
edema is obvious under some conditions, but in others its presence is "silent," as microedema within the 
wound environment, and its effects on wound healing are often not considered. Further, the physical 
features of sustained edema may change over time due to a progressive increase in protein concentration 
and fibrin cross-linking. These changes further impact the wound healing process. In view of the well 
documented ability of EMF therapy to reduce gross edema, the question arises as to whether EMF-
related effects that may reduce microedema, either directly or by its effects on lymphatic pathways, 
plays a role in the favorable effect of EMFT on wound healing. It has been argued that PREMF affects 
lymphatic channels as they do blood vessels(59). There is also evidence that lymphatic vessels near 
ulcers are reduced in number and have partially destroyed endothelium (171), at which site one finds 
vascular endothelial growth factor receptor-3 . In experimental dermal wounds.(172), the expected 
angiogenic derived vessels were observed to evolve into granulation tissue. But, unexpectedly, from day 
five after wounding and onward, blood vessels that were positive for this growth factor appeared to 
sprout from periwound lymphatic vessels to become part of the granulation tissue. Although blood 
vessels remained, the growth factor positive lymphatic vessels regressed(172). This suggests a 
potentially important role of the lymphatic vessels in processes involved in forming wound granulation 
tissue. This would be dependent on a transient lymphangiogenesis and, based on data from human 
wounds, an upregulation of the vascular endothelial growth factor contained therein(172). Preliminary 
results(59) indicate that PREMF (27.1 MHz) significantly reduces edema in patients with 
postmastectomy lymphedema. Since in these patients the main deficit is a dearth or absence of normal 
lymphatic pathways due to surgery and/or radiation, reduction in edema is most likely achieved by the 
development of alternate lymphatic pathways. This observation suggests the possibility that a new and 
potentially promising target for EMF therapy is the lymphatic vessels within and surrounding the wound 
area. 
 
In conclusion, the cumulative substantial evidence from cellular and animal experiments and from 
human studies strongly indicate important positive linkages between forms of electromagnetic therapy 
and wound healing. The composite findings provide a firm underlying basis for EMF therapy when used 
in a thoughtful and selective manner in the treatment of certain chronic or recalcitrant wounds. 
However, the involved mechanisms remain at best speculative and there remain large gaps in our 
understanding of the specific cellular and functional targets, therapeutic dose and regimens to achieve 
optimal treatment of specific wound types. It is suggested that the complexity of the wound healing 
process in general, and the differential features of specific chronic wound types in particular, demand a 
selective approach for choosing EMF therapy parameters, timing and targets. This implies that 
therapeutic EMF approaches need to be based both on physical and physiological considerations, which 
ultimately need to be judged on the basis of therapeutic outcomes. The functional concepts and EMF 
targets described in this chapter in relation to deficits of specific wound types may provide a basis for 
continued advances in this still evolving adjunctive therapeutic modality. 
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